Lecture 6 (Applications of Differentiation)

Maximum and Minimum Values

Definition: Let c be a number in the domain D of a function f. Then $f(c)$ is the

- absolute maximum value of f on D if $f(c) \geq f(x)$ for any $x \in D$.
- absolute minimum value of f on D if $f(c) \leq f(x)$ for any $x \in D$.

Example: $f(x)=x^{2}, x \in[-3,3]$

$$
c=0-a b s \text { min }
$$

$y=0,9$ are extreme values

Other names: an absolute maximum or minimum is sometimes called a global maximum or minimum. The maximum and minimum values of f are called extreme values of f.

Definition: The number $f(c)$ is a

- local maximum value of f if $f(c) \geq f(x)$ for any x near c. in open
- local maximum value of f if $f(c) \geq f(x)$ for any x near c.
- local minimum value of f if $f(c) \leq f(x)$ for any x near c.

Example: $f(x)=\sin x$

$$
\begin{aligned}
& x=\frac{\pi}{2}+2 k \pi \\
& \rightarrow \operatorname{mox} \\
& x=-\frac{\pi}{2}+2 k \pi
\end{aligned}
$$

Example: $y=x^{3}$

When does a function have extreme values?
Theorem: If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and absolute minimum value $f(d)$ at some numbers $c, d \in[a, b]$.

What if f is discontinuous?

What if f is continuous but on an open interval (a, b) ?

Fermat's Theorem: If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
Proof: Assume f has local max at c. Then $f(c) \geq f(x)$ for x close to C
$f(c) \geqslant f(c+h)$, where h is close to 0

$$
f(c+h)-f(c) \leq 0
$$

$$
\frac{c, t h . c+h}{h<0 c} \frac{c+h>0}{c}
$$

Let $h>0$
Then $\frac{f(c+h)-f(c)}{h} \leq 0$

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f k)}{h} \leq 0
$$

Let $h<0 \Rightarrow \frac{f(c+h)-f(c)}{h} \geqslant 0$

$$
\begin{aligned}
& t \quad h<0 \Rightarrow \frac{+(c+h)-1}{h} \geqslant 0 \\
& f^{\prime}(c)=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h} \geq 0 . \text { Thus, } f^{\prime}(c)=0 \\
& \text { 图 }
\end{aligned}
$$

Example: $f(x)=x^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(0)=0 \\
& \text { lout no local }
\end{aligned}
$$

Example: $f(x)=|x|$
O is local min but $f^{\prime}(0) d n e$
Note: However, Fermat's Theorem suggests that we should start looking for extreme values at numbers where the derivative is zero or does not exist.

Definition: A critical number of a function f is a number $c \in D$ such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Example: Find the critical numbers of $f(x)=\frac{x}{1+x^{2}}$

$$
\begin{gathered}
f^{\prime}(x)=\frac{1 \cdot\left(1+x^{2}\right)-x \cdot 2 x}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} \\
1-x^{2}=0 \\
x=+1 \rightarrow 0
\end{gathered}
$$

Rephrase Fermat's Theorem: If f has a local maximum or minimum at c, then c is a critical number of f.

Closed Interval Method: To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

- Find the values of f at the critical numbers of f in (a, b)
- Find the values of f at the endpoints of the interval.
- The largest of the values is the absolute maximum value; the smallest value is the absolute minimum value.

Example: Find the absolute maximum and absolute minimum values of

$$
\begin{aligned}
& f(x)= x^{3}-6 x^{2}+5 \text { on }[-3,5] . \\
& f^{\prime}(x)= 3 x^{2}-12 x=0 \\
& x(x-4)=0 \\
& x=0 \quad \text { or } x=4 \in[3,5] \\
& f(0)= 5 \\
& f(4)= 4-6 \cdot 4^{2}+5=-27 \\
& f(-3)=-76 \\
& f(5)=-20
\end{aligned}
$$

Example: $f(x)=e^{x}+e^{-2 x}, 0 \leq x \leq 1$

$$
\begin{aligned}
& f^{\prime}(x)= e^{x}+e^{-2 x}(-2) \\
&= e^{x}-2 e^{-2 x} \\
&= e_{0}^{-2 x} x_{0}^{\left(e^{3 x}-2\right)=0} \\
& e^{3 x}=2 \\
& \quad 3 x=\ln 2 \Rightarrow x=\frac{1}{3} \ln 2 \\
& f\left(\frac{1}{3} \ln 2\right)=1.89 \quad\left(\frac{1}{3} \ln 2,189\right)-\operatorname{abs} \\
& f(0)= e^{0}+e^{0}=2 \quad(1,2.84)-\min \\
& f(1)=e^{1}+e^{-2}=2.84
\end{aligned}
$$

Rolle's Theorem: Let f be a function such that

- f is continuous on $[a, b]$
- f is differentiable on (a, b)
- $f(a)=f(b)$

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.
Proof:
Case 1. $f(x)=$ const $=k, f(a)=f(b)=k$

$f^{\prime}(x)=0$ for amy $x \in(a, b)$
Take any c from (a, b)
Case 2. $f(x)>f(a)$ for some $x \in(a, b)$
 $f(x)$ must wave max value for some $c \in(a, b)$ \Rightarrow by Fermat's Thu , $f^{\prime}(c)=0$

Proof (continued):
lase $3 \quad f(x)<f(a)$ for some $x \in(a, b)$

$f(x)$ must have min value for sosobne $c \in(a, b)$
\Rightarrow by Fermat's Thu, $f^{\prime}(c)=0$

Example: Prove that the equation $x^{13}+7 x-5=0$ has exactly one (real) root.

$$
\begin{aligned}
f(x) & =x^{13}+7 x-5 \\
f(0) & =-5 \\
f(1) & =1+7-5=3 \\
& -5 \leq 0 \leq 3
\end{aligned}
$$

By IVI, there $L S \quad c \in(0,1)$ such that $f(c)=v$.
Suppose there are two roots: a, b s.t $f(a)=0=f(t)$ \Rightarrow by Roller's The, there is $d \in(a, b)$ set $f^{\prime}(d)=0$

$$
f^{\prime}(x)=13 x^{12}+7 \geqslant 7>0 \Rightarrow \text { Contradiction }
$$

Mean Value Theorem (MVT): Let f be a function such that

- f is continuous on $[a, b]$
- f is differentiable on (a, b)

Then there is a number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=m_{A B}
$$

or

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Geometric interpretation: There is a point in (a, b) such that the tangent line at that point is parallel to the secant line going through points $(a, f(a))$ and $(b, f(b))$.

Proof: Equation of line $A B$

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

Let $g(x)=f(x)-\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right]$
Check Rale's The conditions

1. $g(x)$ is contimuars on $[a, b]$
2. $g(x)$ is diff on (a, b)

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
$$

3. $g(a)=f(a)-f(a)-\frac{f(b)-f(b)}{b-a}(a-a)=0$

Proof(continued):

$$
g(b)=f(b)-f(a)-\frac{f(b)-f(a)}{b-a}(b a)=0
$$

So, $g(a)=g(f)$
By Rolle's Then, theke is $c \in(a, b)$ s.t

$$
g^{\prime}(c)=0
$$

So,

$$
\begin{aligned}
0=g^{\prime}(c) & =f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} \\
\Rightarrow \quad f^{\prime}(c) & =\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Example: Suppose we know that $f(x)$ is continuous and differentiable on $[-7,0], f(-7)=-3$, and $f^{\prime}(x) \leq 2$. What is the largest possible value for $f(0)$?
By MVT, there is $c \in[-7,0]$

$$
\text { st. } \begin{aligned}
f^{\prime}(c) & =\frac{f(0)-f(-7)}{0-(-7)} \\
& =\frac{f(0)-(-3)}{7} \\
7 f^{\prime}(c) & =f(0)+3 \\
f(0) & =7 \cdot f^{\prime}(c)-3 \leq 7 \cdot 2-3 \\
r_{2} & =11
\end{aligned}
$$

Fact: If $f^{\prime}(x)=0$ for all $x \in(a, b)$, then f is constant on (a, b).
Proof:
Let $x_{1}, x_{2} \in(a, b)$ st $x_{1}<x_{2}$
$f(x)$ is diff on $(a, b) \Rightarrow$ diff. on $\left(x_{1}, x_{2}\right)$ and, thus, continuous on $\left[x_{1}, x_{2}\right]$
By MVT, there is $c \in\left(X_{1}, X_{2}\right)$ st

$$
\begin{gathered}
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=0 \\
\Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)
\end{gathered}
$$

Since x_{1}, x_{2} are any numbers from $(a ; b)$, f is constant on (a, b)

Corollary: If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then $f-g$ is constant on (a, b).
Proof:

$$
\begin{aligned}
& h(x)=f(x)-g(x) \\
& h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0 \quad \text { for all } \\
& \\
& x \in(a, b)
\end{aligned}
$$

Ry prev. fact, $h(x)=$ const

$$
\Rightarrow f-g=\text { wist }
$$

How Derivatives Affect the Shape of a Graph Increasing/Decreasing Test:

- If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
- If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval. \leftarrow similar

Proof: V Let $x_{1}<x_{2}$
want: if $f^{\prime}(x)>0$ then $f\left(x_{1}\right)<f\left(x_{2}\right)$ $f(x)$ is diff on $\left(x_{1}, x_{2}\right)$
By MVT, there is $c \in\left(x_{1}, x_{2}\right)$ st

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
& f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(c)\left(x_{2}-x_{1}\right)>0 \\
& f\left(x_{2}\right)>f\left(x_{1}\right) \Rightarrow f(x) \text { is y }
\end{aligned}
$$

Example: Find the intervals where $f(x)=4 x^{3}+3 x^{2}-6 x+1$ is inceasing or decreasing.

$$
\begin{aligned}
f^{\prime}(x)= & 12 x^{2}+6 x-6=0 \\
& 2 x^{2}+x-1=0 \\
& (2 x-1)(x+1)=0 \\
& x=\frac{\frac{1}{2},-1 \text { are critical points }}{7}
\end{aligned}
$$

$f(x)$ is 7 or $(-\infty,-1) \cup\left(\frac{1}{2}, \infty\right)$ I on $\left(-1, \frac{1}{2}\right)$

First Derivative Test:

Let c be a critical number of a continuous function f. Then,

- If f^{\prime} changes from positive to negative at c, then f has a local max at c.

- If f^{\prime} changes from negative to positive at c, then f has a local min at c.

- If f^{\prime} does not change sign at c, then f has no local max or min at c.

Example: Given $f(x)=4 x^{3}+3 x^{2}-6 x+1$. Find the local minimum/maximum values.

$$
\begin{aligned}
& f(-1)=6 \\
& f\left(\frac{1}{2}\right)=-0.75
\end{aligned}
$$

$$
(-1,6)-|u c a| \max
$$

$$
\left(\frac{1}{2},-0.75\right)-(0 \text { ca }) \min
$$

Example: Given $f(x)=\cos ^{2} x-2 \sin x, 0 \leq x \leq 2 \pi$, find the local minimum $/$ maximum values of $f . \quad f\left(\frac{\pi}{2}\right)=-2, f\left(\frac{3 \pi}{2}\right)=2$

$$
f^{\prime}(x)=2 \cos x \cdot(-\sin x)-2 \cos x=0
$$

$-2 \cos x(1+\sin x)=0$

Concavities
Definition: If the graph of f lies above (below) all of its tangents on an interval, then we say, it is concave up (concave down) on that interval.

Concavity Test:

- If $f^{\prime \prime}(x)>0$ on an interval, then the graph of f is concave up (CU) on that interval.
- If $f^{\prime \prime}(x)<0$ on an interval, then the graph of f is concave down (CD) on that interval.

Definition: A point P on a curve $y=f(x)$ is called an inflection point (IP) if f is continuous there and the curve changes from CU to CD or vise versa at P.

Example: Given $f(x)=x^{2} \ln x$, find the intervals of concavity and the inflection points.

$$
\begin{array}{rl}
f^{\prime}(x)= & x^{2} \frac{1}{x}+2 x \ln x=x+2 x \ln x \\
f^{\prime \prime}(x)= & 1+2 x \cdot \frac{1}{x}+2 \cdot \ln x \\
= & 3+2 \ln x=0 \\
& \ln x=-\frac{3}{2} \\
x=e^{-3 / 2} & 0 \\
& \\
f(x) \text { is } \operatorname{cD} \text { on }\left(0, e^{-3 / 2}\right) & c \cdot c \\
c \cup \text { on }\left(e^{-3 / 2}, \infty\right) & (0.223, f(0.223)) \\
& \text { is IP }
\end{array}
$$

Second Derivative Test: Let $f^{\prime \prime}$ be continuous near c.
CU

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
$C D$
Example: $f(x)=\frac{x^{2}}{x-1}$, find the local minimum and maximum values.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 x(x-1)-x^{2}}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}}=\frac{x(x-2)}{(x-1)^{2}} \\
& f^{\prime \prime}(x)=\frac{(2 x-2)(x-1)^{2}-\left(x^{2}-2 x\right) 2(x-1)}{(x-1)^{4}} \quad x=0,2,1 \\
& (x-1)^{4} \\
& =\frac{2\left((x-1)^{2}-\left(x^{2}-2 x\right)\right)}{(x-1)^{3}}
\end{aligned}
$$

Example: Given $f(x)=\frac{e^{x}}{1-e^{x}}$. Use the first and second derivatives, together with asymptotes, to sketch the graph of f.

$$
\begin{aligned}
& \text { 1. Domain }=\left\{x: 1-e^{x} \neq 0\right\}=\{x: x \neq 0\} \\
& \text { 2. } \lim _{x \rightarrow \infty} \frac{e^{x}}{1-e^{x}} \cdot \frac{\frac{1}{e^{x}}}{\frac{1}{e^{x}}}=\lim _{x \rightarrow \infty} \frac{1}{\underbrace{\frac{1}{e^{x}}-1}_{0}}=-1 \\
& y=-1 \text { is HA } \\
& \lim _{x \rightarrow-\infty} \frac{\left.e^{x}\right) \rightarrow 0}{1-e^{x}}=0 \\
& y=0 \text { is HA } \\
& \lim _{x \rightarrow 0^{+}} \frac{e^{x}}{1-e^{x}}=-\infty \quad \lim _{x \rightarrow 0^{-}} \frac{e^{x}}{1-e^{x}}=\rho \\
& e_{e^{x} \rightarrow 1^{+}}^{0^{+}} \quad x=0 \operatorname{cs} \cup A \quad e^{x} \rightarrow 1^{-}
\end{aligned}
$$

$$
\begin{aligned}
3 \cdot f^{\prime}(x) & =\left(\frac{e^{x}}{1-e^{x}}\right)^{\prime}=\frac{e^{x}\left(1-e^{x}\right)-e^{x}\left(-e^{x}\right)}{\left(1-e^{x}\right)^{2}} \\
& =\frac{e^{x}}{\left(1-e^{x}\right)^{2}}>0 \Rightarrow f(x) y_{0 n} D \\
\text { 4. } f^{\prime \prime}(x) & =\frac{e^{y}\left(1-e^{x}\right)^{2}-e^{x} \cdot 2\left(1-e^{x}\right)\left(-e^{x}\right)}{\left(1-e^{x}\right)^{4}} \\
& =\frac{e^{x}\left(1-e^{x}\right)+2 e^{2 x}}{\left(1-e^{x}\right)^{3}}=\frac{e^{x}+e^{2 x}}{\left(1-e^{x}\right)^{3}} \\
& =\frac{e^{x}\left(1+e^{x}\right)>0}{\left(1-e^{x}\right)^{3}}
\end{aligned}
$$

Indeterminate Forms

What if we want to find $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$?

There are several types of indeterminate forms:

$$
\frac{0}{0} \quad \text { and } \quad \frac{ \pm \infty}{ \pm \infty}
$$

Indeterminate difference: $\quad \infty-\infty$
Indeterminate product: $0 \cdot \infty$
Indeterminate power: $0^{0}, \infty^{0}$, and 1^{∞}

The first two types are solvable with the help of l'Hospital's Rule.

L'Hospital's Rule: Let f and g be differentiable on (a, b) and $g^{\prime}(x) \neq 0$ on (a, b). Let $c \in(a, b)$. If

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{0}{0} \quad \text { or } \quad \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty}
$$

Then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Example:

$$
\begin{aligned}
\lim _{x \rightarrow \infty}^{\text {Example: }} \frac{x^{2}}{e^{x}} y_{\infty} & \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\overbrace{x}^{2 x}}{e^{x}} \\
& \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0
\end{aligned}
$$

Example:

$$
\lim _{x \rightarrow 0} \frac{\frac{\sin x}{x}}{-\infty}=1
$$

$$
\begin{aligned}
& 0 \cdot(-\infty) \\
& \lim _{x \rightarrow 0^{+}} \frac{\sin x}{x} \frac{\ln x}{1 / x}=\lim _{1} \frac{\sin x}{x} \cdot \lim _{y \rightarrow 0^{+}} \frac{\ln x}{-\infty} / x \\
& \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}= \\
&=\lim _{x \rightarrow 0^{+}}(-x)=0
\end{aligned}
$$

Example:

$$
\begin{gathered}
\lim _{x \rightarrow \infty}^{\infty}(x-\ln x)=\lim _{x \rightarrow \infty} x\left(1-\frac{\ln x}{x}\right)= \\
\lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
\left(=\lim _{x \rightarrow \infty} x \cdot \lim \left(1-\frac{\ln x}{x}\right)\right. \\
=\infty
\end{gathered}
$$

$$
\begin{aligned}
& \text { Example: } \\
& \infty^{0} \quad \ln y=\frac{1}{x} \ln \left(e^{x}+x\right) \\
& \lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x} \\
& e^{\lim _{x \rightarrow \infty} \ln y}=\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x} \stackrel{H}{\frac{\infty}{\infty}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}+x}\left(e^{x}+1\right)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}} \\
& =1 \\
& e^{\lim \ln y}=\lim e^{\ln y}=\lim y=e
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{2 x-3}{2 x+5}\right)^{2 x+1} \\
& \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty}(2 x+1) \cdot \ln \left(\frac{2 x-3}{2 x+5}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(\frac{2 x-3}{2 x+5}\right)}{1 /(2 x+1)}=\lim _{x \rightarrow \infty} \frac{\ln (2 x-3)-\ln (x x+3)}{1 /(2 x+1)} \\
& \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{2}{2 x-3}-\frac{2}{2 x+5)}}{-\sqrt[2]{(2 x+1)^{2}}}=\lim _{x \rightarrow \infty} \frac{-[2 x+5-(2 x-3)](2 x+1)^{2}}{(2 x-3)^{(2 x+5)}} \\
& =\lim _{x \rightarrow \infty} \frac{-8(2 x+1)^{2}}{\frac{2 x}{2}} \cdot \frac{1}{x^{2}}=\lim _{x \rightarrow \infty} \frac{-8\left(2+\frac{1}{x}\right)^{2}}{\left(2-\frac{3}{x}\right)\left(2+\frac{5}{x}\right)} \\
& =-8 \cdot \frac{2^{2}}{2 \cdot 2}=-8 \quad \text { lim } y=e^{-8}
\end{aligned}
$$

Slant Asymptotes

There are asymptotes that are neither horizontal nor vertical, but oblique.

V.A. (vertical asymptote)

H.A. (horizontal asymptote)

S.A. (slant asymptote)

Definition: The line $y=m x+b$ is called a slant asymptote if

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}[f(x)-(m x-b)]=0 \\
& \quad \pm \infty
\end{aligned}
$$

Note: For rational functions, the slant asymptotes are present if the degree of the numerator is one more than the degree of the denominator.

Example: Find all the asymptotes of $r(x)=\frac{x^{2}-4 x-5}{x-3}=-\frac{8}{x-3}+x-1$

$$
\begin{aligned}
& x^{x^{2}-4 x-5} \begin{array}{l}
\frac{x-3}{x-1} \\
-\frac{x^{2}-3 x}{-x-5} \\
\\
\lim _{x \rightarrow \infty}[r(x)-(x-1)] \\
\\
y=\lim _{x \rightarrow \infty} \frac{-8}{x-3}=0 \\
\lim _{x \rightarrow \infty} \frac{x^{2}-4 x-5}{x-3} \cdot \frac{1}{x} \cdot \frac{1}{x} \lim _{x \rightarrow \infty} \frac{x-4-\frac{5}{x}}{1-\frac{3}{x}}=\infty \text { no HA }
\end{array}, l
\end{aligned}
$$

Example: Sketch the graph of $y=\frac{x^{2}+1}{x}=X+\frac{1}{X}$

$$
\text { Domain }=\{x \neq 0\}
$$

Asymptotes

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{2}+1}{x} \cdot \frac{1}{x}=\lim _{x \rightarrow \pm \infty} \frac{x+\frac{1}{x}}{1}= \pm \infty
$$

\Rightarrow no HA

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x^{2}+1}{x}=\infty ; \lim _{x \rightarrow 0^{-}} \frac{x^{2}+1}{x}=-\infty \\
& \Rightarrow x=0 \text { is } \vee A \\
& \lim _{x \rightarrow \infty^{-}}\left[\frac{x^{2}+1}{x}-x\right]=\lim _{x \rightarrow \infty} \frac{1}{x}=0 \Rightarrow y=x \text { is SA }
\end{aligned}
$$

$$
y^{\prime}=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}=\frac{(x-1)(x+1)}{x^{2}}
$$

$$
x= \pm 1,0 \text { are critical paints }
$$

$f(x) \nearrow$ on $(-\infty,-1) \cup(1, \infty)$

$$
\text { y on }(-1,0) \cup(0,1)
$$

$(-1,-2)$ is local max $(1,2)$ is local min

$$
y^{\prime \prime}=\frac{2}{x^{3}}
$$

$f(x)$ is $C D$ on $(-\infty, 0)$ $C U$ on $(0, \infty)$

Example: Sketch $f(x)=\frac{e^{x}}{x^{2}}$
Domain $=\left\{X^{\frac{x^{2}}{}} \neq 0\right\}$

$$
\begin{aligned}
& \text { Asymptotes: } \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2 x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty \\
& x \xrightarrow{x}=\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow-\infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow-\infty} e^{x} \cdot \frac{1}{x^{2}}=0 \cdot 0=0 \Rightarrow y=0 \text { is } H A
$$

$$
\lim _{\rightarrow \infty} \frac{e^{x}}{x^{2}}=\infty \Rightarrow x=0 \text { is } V A
$$

$$
y^{\prime}=\frac{e^{x} x^{2}-2 x e^{x}}{x^{4}}=\frac{e^{x}(x-2)}{x^{3}}
$$

$x=0,2$ are critical points $0 \notin$ domain min $f(x) \Gamma$ on $(-\infty, 0) \cup(2, \infty), \Downarrow$ on $(0,2),\left(2, e^{2} / 4\right)-$ - 0 ca \mid

$$
\begin{aligned}
& y^{\prime \prime}=\frac{\left[e^{x}(x-2)+e^{x}\right] x^{3}-3 x^{2} e^{x}(x-2)}{x^{6}}=\frac{e^{x} x^{2}[(x-1) x-3(x-2)]}{x^{6}} \\
& =\frac{e^{x}\left[x^{2}-4 x+6\right]}{x^{4}}>0\left[\begin{array}{l}
x^{2}-4 x+6>0 \\
b^{2}-4 a c=16-4.6 .1<0 \\
\text { no } x \text {-intercepts }
\end{array}\right]
\end{aligned}
$$

$\Rightarrow f(x)$ is $c \cup$ on $(-\infty, 0) \cup(0, \infty)$ m Ip

